Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 152, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573310

RESUMO

BACKGROUND: Despite being necessary, copper is a toxic heavy metal that, at high concentrations, harms the life system. The parameters that affect the bioreduction and biosorption of copper are highly copper-resistant bacteria. RESULTS: In this work, the ability of the bacterial biomass, isolated from black shale, Wadi Nakheil, Red Sea, Egypt, for Cu2+ attachment, was investigated. Two Cu2+ resistance Bacillus species were isolated; Bacillus pumilus OQ931870 and Bacillus subtilis OQ931871. The most tolerant bacterial isolate to Cu2+ was B. pumilus. Different factors on Cu2+ biosorption were analyzed to estimate the maximum conditions for Cu biosorption. The qmax for Cu2+ by B. pumilus and B. subtilis determined from the Langmuir adsorption isotherm was 11.876 and 19.88 mg. g-1, respectively. According to r2, the biosorption equilibrium isotherms close-fitting with Langmuir and Freundlich model isotherm. Temkin isotherm fitted better to the equilibrium data of B. pumilus and B. subtilis adsorption. Additionally, the Dubinin-Radushkevich (D-R) isotherm suggested that adsorption mechanism of Cu2+ is predominately physisorption. CONCLUSION: Therefore, the present work indicated that the biomass of two bacterial strains is an effective adsorbent for Cu2+ removal from aqueous solutions.


Assuntos
Bacillus pumilus , Cobre , Bacillus subtilis/genética , Egito , Oceano Índico , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA